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Abstract – In a stochastic simulation study of a dairy cattle population three multitrait models
for estimation of genetic parameters and prediction of breeding values were compared. The
first model was an approximate multitrait model using a two-step procedure. The first step
was a single trait model for all traits. The solutions for fixed effects from these analyses were
subtracted from the phenotypes. A multitrait model only containing an overall mean, an additive
genetic and a residual term was applied on these preadjusted data. The second model was similar
to the first model, but the multitrait model also contained a year effect. The third model was a full
multitrait model. Genetic trends for total merit and for the individual traits in the breeding goal
were compared for the three scenarios to rank the models. The full multitrait model gave the
highest genetic response, but was not significantly better than the approximate multitrait model
including a year effect. The inclusion of a year effect into the second step of the approximate
multitrait model significantly improved the genetic trend for total merit. In this study, estimation
of genetic parameters for breeding value estimation using models corresponding to the ones
used for prediction of breeding values increased the accuracy on the breeding values and thereby
the genetic progress.

stochastic simulation /multitrait model / genetic evaluation

1. INTRODUCTION

Most dairy cattle breeding programmes rely on multitrait selection, where
predicted breeding values (EBV) for individual traits in the breeding goal are
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combined according to their economic values. EBV for the traits are frequently
obtained from single trait models or in some cases from multitrait models for
groups of traits. Over recent years, more and more focus has been put on lowly
heritable traits leading to breeding values with low accuracies and thereby in-
stability in breeding values for these traits [13]. A way to increase the accuracy
of predicted breeding values for all traits in the breeding goal is to use multi-
variate methods for prediction of breeding values in order to fully exploit the
data and to combine direct and indirect information on correlated traits in the
breeding goal [21, 22]. For most breeding programmes with dairy cattle, a full
multivariate prediction of breeding values is not computationally feasible due
to the number of animals and number of traits involved [6]. An approximate
method has been proposed by [8] analysing records adjusted for fixed effects
so that each trait has one observation containing an overall mean, a genetic
term and a residual term for all animals in a multitrait setting. This method has
been shown to work with both longevity [18] and repeated observations [8].
The inclusion of breeding values from test day models into this approximate
multitrait model is possible using MACE (multiple-trait across country genetic
evaluation) methodology [19]. The reliability for longevity on newly proven
bulls increased from 0.40 to 0.58 using this method. Also the selection differ-
ential for the 10% best bulls increased for SCC (somatic cell count), functional
longevity and female fertility when comparing the approximate model with the
model used previously. In this approach single trait models were used for each
trait in the breeding goal and EBV were weighted together afterwards. This
result though was a mixture of both changing the model and the breeding goal
at the same time. Applying this approximate multitrait method in laying hens
gave similar results as shown by [8]. It increased the selection differential for
the 10% best animals for all traits in the breeding goal except precocity as
compared to using a single trait model for all traits [1]. The method has also
been shown to be superior in terms of genetic progress compared to a single
trait approach [11].

Another benefit from multitrait evaluation including all traits in the breeding
goal is that selection bias is considered [10]. The fact that the main selection
in dairy cattle for many years has been on production, will lead to biased pre-
dicted breeding values when single trait analysis is used since genetic corre-
lations are not accounted for. This will show up as bias in estimated genetic
trends [14].

In the PROTEJE project [2] it has been shown that including an effect
of time (year) of performance in the MACE model used for international
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prediction of breeding values for bulls could account for selection bias in the
national evaluations and thereby lead to more robust evaluations [9].

A drawback of multitrait evaluation is that the correlations used are only
estimates, and they are often estimated with high uncertainty. Studies have
shown that response to selection depends highly on the precision of the esti-
mated and applied variance components [23]. Therefore, sometimes univariate
models can provide more precise estimates than multitrait models.

The aim of this study was to augment the approximate multitrait method
proposed by [4, 8] with a time effect to account for selection bias in predicted
breeding values and variance components for the individual traits in national
breeding value estimation. The augmented method was tested using stochastic
simulation of a dairy cattle population.

2. MATERIALS AND METHODS

2.1. Outline of the simulation

The simulation was split into two steps each covering 15 years of selection.
The idea behind this setup was in the first step to create a population that had
undergone selection for a number of years before entering an experimental
stage. In the second step, three methods of interest for prediction of breeding
values were compared. Between the two steps, (co)-variance components for
the traits of interest were estimated and used for prediction of EBV in the last
step. This corresponds to a situation that often occurs in practical breeding pro-
grammes, where (co)-variance components are re-estimated, and new methods
or models for prediction of EBV are introduced.

2.2. Structure of the simulated population

A population of approximately 100 000 animals was simulated, using a
modified version of the stochastic simulation programme DairySim [17]. The
simulation followed a yearly cycle as shown in Figure 1.

2.2.1. Traits

Seven traits were included in a total merit breeding goal: production (P),
udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS) (Tab. I). These traits were five
normally distributed traits and two binary traits. At generation 0, the genetic



356 J. Lassen et al.

Figure 1. One year in the simulation study.

Table I. True heritabilities (diagonal), genetic (below diagonal) and phenotypic (above
diagonal) correlations for traits in the simulation study.

Trait P UD MO NR DF DO SCS
P 0.30 −0.20 0 −0.10 0.25 0.20 −0.15
UD −0.35 0.30 −0.05 0 0 −0.10 −0.05
MO 0.35 −0.60 0.04 0 0 0 0.20
NR −0.35 0.30 −0.10 0.03 0 0.05 0
DF 0.45 −0.10 0.25 0 0.25 0.10 0
DO 0.55 −0.10 0.05 −0.10 0.45 0.04 0
SCS 0.15 −0.30 0.75 −0.20 0.25 −0.25 0.10

Production (P), udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS).

and phenotypic parameters for these traits were known and considered to be
the true ones (Tab. I).

These traits were chosen to represent traits with substantial economic value
in practical breeding and because they represented different types of traits with
a wide range of genetic variance and correlation with other traits. For all traits,
true breeding values and phenotypic observations were simulated multivari-
ately as Gaussian traits. MO and NR were however, converted to binary traits
with thresholds corresponding to frequencies of 0.18 and 0.5.

2.2.2. The first 15 years

Breeding values and phenotypes for the seven traits were simulated for
base population animals, and they were allocated to age classes, gender and
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Table II. Parameters used in the simulation study.

Information Parameter
Number of years simulated 15
Number of replicates 20
Number of herds 1000
Herd size in number of females 100 cows
Young sires used for mating in percentage 30
Semen doses used from each young sire 750
Semen doses from each proven sire per year 24 000
Maximum age of bull at mating 7
Age when observations from females become available 33
Maximum number of offspring per dam 6
Pregnancy rate 0.9

herd-year-season groups. The observations were simulated using the parame-
ters in Table II.

In the base population, the animals were mated randomly. In later years,
the best males and females were mated to produce offspring based on the pre-
dicted total merit index (TM). The TM used was based on EBV for P and
MO with economic weights of 19.4 and −50.0 per phenotypic standard devi-
ation unit, respectively, corresponding to the economic values used at present
in the Danish Holstein population for these two traits [20]. The EBV for P
were obtained from a single trait animal model, while the EBV for MO were
from a trivariate animal model including MO, UD and SCS. The binary trait
MO was treated as a normally distributed trait. Models included a fixed herd-
year-season effect, an animal effect and a residual term. Breeding values were
estimated using genetic parameters corresponding to the ones presented in
Table II. Selected bulls could be used in all herds, but in order to avoid strong
inbreeding, mating between full- and halfsibs was avoided. Bulls were allo-
cated to one of two groups representing young bulls and proven bulls and
30% of the bulls used in the simulation were unproven. Given the popula-
tion size and the amount of semen produced by each young bull the number
of young bulls tested per year were 40. An elite bull could not be used more
than 24 000 times each year. Offspring were simulated individually and ran-
domly distributed according to gender, and for each individual trait allocated
to a herd-year-season. True breeding values were simulated as their parents
average breeding values plus a Mendelian sampling term. Simulated observa-
tions were only realised for females and first when an appropriate age was
reached. Observations from animals that did not reach this age were discarded.
Cows were kept in the herds until better replacement heifers were available.
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A proportion of the cows were involuntarily culled and all cows were culled
when reaching a maximum age of 8 years. The replacement rate in the sim-
ulations was 30% in all scenarios. Also, the percentage of animals that died
involuntarily per year was 5%, and these animals were picked randomly.

2.2.3. The last 15 years

A broader breeding goal was defined with weights on production (19.4),
mastitis occurrence (−50.0), udder depth (4.2), non-return rate (13.0) and days
open (−16.75). Dairy form and somatic cell score were both used as indicator
traits.

Three different scenarios for prediction of EBV were simulated. In all sce-
narios, breeding values were predicted using different multitrait settings and
the binary traits were analysed as linear normally distributed traits. The fol-
lowing general (co)-variance structure was used:

var

(
a
e

)
∼ N

(
0;

[
G0 ⊗ A 0

0 R0 ⊗ I

] )
. (1)

(Co)-variance components for use in prediction of breeding values in the three
scenarios were estimated on data simulated for the first 15 years as described
in the section on estimation of (co)-variance components. Even though differ-
ent (co)-variance components were used for prediction of EBV in the three
scenarios, the simulation was still based on the original values (Tab. I).

2.2.4. Scenarios

In scenario A an approximate multi-trait model as proposed by [4, 8] was
applied. This is a two-step procedure, where the first step was applying models
to each trait corresponding to the model used in the first 15 years. The obser-
vations were adjusted for the herd-year-season effect based on estimates from
these models. Using these preadjusted data, breeding values for all traits were
predicted in a multitrait setting using a model with a mean, a genetic effect and
a residual:

yi,m = hysi + ai,m + ei,m → y∗i,m = µi + a∗i,m + e∗i,m (model I)

where yi,m represents the record for animal m for trait i, hysi the herd-year
season effect for each trait and ai,m and ei,m the additive genetic and residual
term for trait i of animal m. y∗i,m represents the preadjusted record for animal m
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for trait i, µi the overall mean for each trait and a∗i,m and e∗i,m the additive genetic
and residual term for the preadjusted record i of animal m.

The second step in (model I) was a complete multitrait setting, where G0

and R0 of (1) were 7 × 7 matrices estimated using model I (on precorrected
data) as described in the section on estimation of co-variance components.

In scenario B a model similar to model I was used. The only difference was
the inclusion of a time (year) effect in the second step where the multitrait
evaluation was performed (model II):

yi,m = hysi + ai,m + ei,m → y∗i,m = µi + year + a∗i,m + e∗i,m. (model II)

The purpose of the time effect is to correct for potential selection bias from
ignoring correlations between traits when doing single trait evaluations as is
done in the first step of the approximate multitrait model [9]. The effect of the
improved model should show up both in terms of more accurate breeding val-
ues and in terms of more precise variance components. G0 and R0 of (1) were
7 × 7 matrices estimated using model II (on precorrected data) as described in
the section on estimation of co-variance components. Using methodology like
this one deletes some of the problematic aspects of multitrait evaluations. The
model allows different models for different traits and it can handle repeated
records. Repeated records were not simulated in this study because it makes
computation even more complex but the approach is the same as for traits with
one observation: the adjusted records are summarised to one per cow [8] and
afterwards all record contributions are summed to adjusted records and ap-
propriate weights. Doing the evaluation in two steps where fixed effects are
subtracted from the observations after the first step makes the model capable
of handling more traits since fewer equations need to be solved in the second
multitrait step.

In scenario C, a full multitrait animal model on raw data for prediction of
EBV (model III) was used, where fixed and random effects were estimated at
the same time and where G0 and R0 of (model I) were 7×7 matrices, estimated
using model III:

yi,m = hysi + ai,m + ei,m. (model III)

2.2.5. Estimation of co-variance components

After the first 15 years, (co)-variance components to be used in prediction of
EBV for the last 15 years were estimated. For scenarios A and B (co)-variance
components were estimated in two steps. In the first step four single trait an-
imal models for P, NR, DF and DO, and a three trivariate animal model for
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MO and UD with SCS were used as for breeding value estimation in the first
15 years. For the last step of scenarios A and B, covariance components were
estimated in a full multivariate setting on preadjusted data and keeping the
variances fixed at the values estimated for the first step. The only difference
was that the model used in scenario B included a time (year) effect to account
for potential selection bias. For scenario C, a full multitrait animal model was
used. Estimation of the (co)-variance components for each of the three scenar-
ios were performed on 10 sample datasets each with ∼8000 animals with data.
The average over subsets was used as parameters for prediction of EBV for the
last 15 years. The estimations were conducted with the AI-REML module of
the DMU-package [12].

2.2.6. Simulations of the last 15 years

All replicates of all scenarios were started from the same population sim-
ulated for the first 15 years. The simulations were as described for the first
15 years, but with the new (broader) breeding goal and the improved mod-
els/methods for prediction of EBV depending on scenario.

The efficiency of the three scenarios was compared based on the obtained
progress in true total merit for the new and broader breeding goal.

3. RESULTS

(Co)-variance components estimated after the first 15 years of the simulation
study are shown in Tables III, IV and V. The estimated heritabilities were not
significantly different from the ones used to simulate the data using any of
the models. For the approximate multitrait model without a time (year) effect
(model I) 15 out of the 21 genetic correlations differed more than +/−0.10 from
the ones used to simulate the data (Tab. III).

Only 5 of the 21 genetic correlations deviated more than +/−0.10 from the
genetic correlations used to simulate the data both when using an approximate
multitrait model with a time (year) effect (model II) and a full multitrait model
(model III) (Tabs. IV and V).

In general, most of the estimated correlations were closer to 0 than the ones
used to simulate the data. The residual correlations did not change as much as
the genetic correlations. When using models I and II, only two of the residual
correlations were different by more than +/−0.10 from the residual correlations
used to simulate the data (Tabs. III and IV), and when using model III only a
single residual correlation deviated more than 0.10 (Tab. V).
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Table III. Heritabilities (on diagonal), genetic (below diagonal) and residual (above
diagonal) correlations between the seven traits in the simulation estimated for sce-
nario A on 10 subsets of the data simulated in the first 15 years. Heritabilities were
estimated with univariate models and kept fixed in the multitrait setting. Correlations
deviating ± 0.10 are underlined.

P UD MO NRR DC DO SCS
P 0.27 −0.23 0.01 −0.08 0.19 0.21 −0.17
UD −0.16 0.29 0.03 −0.05 −0.24 −0.15 0.03
MO 0.17 −0.46 0.05 −0.02 −0.03 0.00 0.08
NRR −0.22 0.10 −0.06 0.03 0.01 0.04 0.01
DC 0.31 −0.13 0.13 0.10 0.25 0.06 0.02
DO 0.24 −0.08 −0.12 −0.17 0.30 0.06 0.03
SCS −0.12 −0.32 0.57 −0.07 −0.11 −0.46 0.12

Production (P), udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS).
Empirical standard errors from the 10 subsets on the heritabilities were below 0.01 and on
correlations standard errors were all below 0.05.

Table IV. Heritabilities (on diagonal), genetic (below diagonal) and residual (above
diagonal) correlations between the seven traits in the simulation estimated for sce-
nario B on 10 subsets of the data simulated in the first 15 years. Heritabilities were
estimated with univariate models and kept fixed in the multitrait setting. Correlations
deviating ± 0.10 are underlined.

P UD MO NRR DC DO SCS
P 0.27 −0.17 −0.05 −0.08 0.17 0.21 −0.21
UD −0.38 0.29 0.03 −0.05 −0.24 −0.14 0.02
MO 0.42 −0.39 0.05 −0.01 −0.04 −0.00 0.09
NRR −0.27 0.20 −0.15 0.03 0.00 0.04 0.02
DC 0.48 −0.16 0.24 0.12 0.25 0.06 0.02
DO 0.32 −0.17 0.11 −0.16 0.34 0.06 0.02
SCS 0.16 −0.24 0.68 −0.19 −0.07 −0.33 0.12

Production (P), udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS).
Empirical standard errors from the 10 subsets on the heritabilities were below 0.01 and on
correlations standard errors were all below 0.06.

In Table VI, the genetic trend for total merit in each of the three scenarios
is shown. Adding a time (year) effect to the model improved genetic gain for
total merit significantly.

In Tables VII and VIII trends in the true breeding values and in predicted
breeding values for the individual traits for cows in each of the three scenarios
are presented.
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Table V. Heritabilities (on diagonal), genetic (below diagonal) and residual (above di-
agonal) correlations between the seven traits in the simulation estimated for scenario C
on 10 subsets of the data simulated in the first 15 years. Correlations deviating ± 0.10
are underlined.

P UD MO NRR DC DO SCS
P 0.27 −0.13 −0.06 −0.08 0.15 0.19 −0.20
UD −0.41 0.33 0.03 −0.05 −0.20 −0.12 0.01
MO 0.39 −0.38 0.05 −0.01 −0.05 −0.01 0.11
NRR −0.36 0.16 −0.12 0.04 0.00 0.04 0.02
DC 0.47 −0.21 0.24 0.08 0.24 0.05 0.01
DO 0.34 −0.19 0.16 −0.17 0.32 0.05 0.02
SCS 0.18 −0.23 0.75 −0.16 −0.02 −0.31 0.11

Production (P), udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS)
Empirical standard errors from the 10 subsets on the heritabilities were below 0.02 and on
correlations standard errors were all below 0.05.

Table VI. Regression of true and predicted genetic trends on year for total merit (TM)
in simulation with standard errors (SE).

Predicted True
Scenario TM SE TM SE

A 2.566 0.077 2.819 0.047
B 2.946 0.073 2.975 0.056
C 3.021 0.046 3.063 0.073

Table VII. Regression of predicted genetic trends on year for individual traits in sim-
ulation.

Scenario P UD MO NRR DC DO SCC
A 0.113 0.027 −0.009 −0.001 0.032 0.016 −0.023
B 0.122 0.038 −0.011 0.001 0.024 0.009 −0.029
C 0.118 0.040 −0.014 0.003 0.032 0.011 −0.030

Production (P), udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS).
Standard errors were below 0.012.

The breeding value estimation in the last round of the simulation took 12%
more CPU-time using the full multitrait model used in scenario C compared
to the approximate multitrait model used in scenario B. In each of the three
scenarios, more than 2 GB of data was generated from one replicate given the
setup of the simulations, with 20 replicates that lead to more than 120 GB of
data.
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Table VIII. Regression of true genetic trends on year for individual traits in simula-
tion.

Scenario P UD MO NRR DC DO SCC
A 0.097 0.043 −0.021 −0.002 0.035 0.017 −0.022
B 0.108 0.024 −0.022 −0.002 0.037 0.018 −0.017
C 0.107 0.030 −0.023 0.001 0.032 0.018 −0.018

Production (P), udder depth (UD), mastitis occurrence (MO), non return rate (NRR), dairy
character (DC) and somatic cell score (SCS).
Standard errors were below 0.011.

4. DISCUSSION

The full multitrait model led to the highest genetic progress for total merit,
but from the result of 20 replicates this model was not significantly better than
an approximate multitrait model with a time (year) effect to correct for selec-
tion bias. Including a time (year) effect in the approximate multitrait model
led to more robust breeding values and thereby the possibility to obtain higher
genetic progress for total merit. Most countries are providing breeding val-
ues from single trait analysis, and thereby also calculating and publishing total
merit indices from these breeding values. In situations where correlations be-
tween traits are not taken into account, these breeding values will often be
biased [10, 15].

Survival is an economical important trait in a dairy cattle population. By
nature the trait is measured late in life. Given the relatively long generation
interval, the EBV for longevity of bulls based on direct observation will be
very uncertain when the bull is interesting as a proven sire. Using informa-
tion from correlated traits, the accuracy of predicted breeding values for traits
with low heritability will increase. A MACE approach [5] as well as the model
proposed in this study [18] can use indirect, direct and combined information
from yield and functional traits to improve the genetic evaluation for longevity.
When using direct, indirect and combined information, the mean reliability for
all bulls was 0.50, 0.27 and 0.56 respectively. For the youngest proven bulls,
the mean reliability was 0.26, 0.23 and 0.39 respectively. Using information
from linear type traits and production traits [4] gave similar results in a lin-
ear multitrait BLUP setting. In the MACE setting as described by [5], residual
correlations were assumed to be 0. This may not be true in multivariate predic-
tion of breeding value for cows, where most of the traits are measured on each
cow. The MACE methodology has been enhanced to be able to handle residual
correlations different from 0 [16].
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In general, the trend in true genetic merit for the individual traits did not
change much when applying different models for prediction of breeding values
in the simulation. The trends in general become more favourable when apply-
ing a more advanced model for prediction of breeding values. In total these
changes sum up to a significant difference in true total merit. Models/methods
similar to the ones used here have improved genetic response when applied on
data from dairy cattle [8] and laying hens [1]. The selection differential for to-
tal merit of the 10% best sires changed in a favourable direction for all traits in
the breeding goal when applying this methodology. The estimates changed dif-
ferently depending on which model was used to estimate genetic correlations.
When a time (year) effect was not included in the model, correlations between
production and other traits changed. This was not observed to the same extent
when a time (year) effect was included in the approximate multitrait model or
if a full multitrait model was used. These correlations were estimated on data
where there had been a strong selection for production without taking corre-
lations between production and the other traits into account. Including a year
of performance effect in a similar approximate multitrait model gave genetic
parameters and sire solutions more robust to over- or underestimation of ge-
netic trends [9]. The estimated correlations were highly dependent on which
model was used, and focus should still be on the fact that correlations are only
estimates of the true ones [23].

The approximate method used in this study can handle missing observa-
tions [1, 8] also in a canonical setting [7]. Then the residual variances are het-
erogeneous, but the algorithm for missing values described can be extended to
this situation. In the EM algorithm used for missing values, the complete ob-
servations are observations that all have the same weight, equal to the largest
ones on the observed scale. A canonical transformation of data was not applied
in this study since the traits were very simple in nature. There were no missing
observations, which often would occur in real life situations.

The approximate multitrait model as described by [4, 8] can be extended to
handle traits that are not normally distributed traits. This has been shown on
binary and survival traits [1,8,18]. An extension to handle test day records has
also been developed [19]. In the present study, the main focus was to include
a time (year) effect in the model to account for potential selection bias. In this
study, a dairy cattle population was simulated but the model proposed could
be useful in other populations with diverse breeding goals and potential long
generation intervals as well. This has already been shown in laying hens [1].
In this study, especially the genetic gain for traits with low heritability seems
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to increase since accuracy increases by exploiting the available information in
the data. This was also expected and has been shown in other studies [21, 23].

The increase of CPU-time for the full multitrait model in scenario C com-
pared to the approximate multitrait model in scenario B of 12% is a conser-
vative estimate of the reduction of computing time since the model for each
trait was simple and only contained a herd-year-season effect. In real life, each
model would contain more fixed effects, which would increase the computing
time relatively more for the full multitrait model. In this study, seven traits
were simulated. Addition of more traits would clearly not result in a linear in-
crease in computing time. In addition, the present limit in terms of number of
traits one would be able to handle in a full multitrait model in a reasonable size
population as described in this study, would sooner be reached than using an
approximate multitrait model. The amount of data produced in the simulations
with 20 replicates limited the number of scenarios that could be compared
in this study. Several other situations using different models, amount of data
available and types of traits could have been interesting to examine, but were
not investigated in this study.

Comparing models for prediction of breeding values in a simulation of a
selection scheme has been done before to quantify the effect of not taking
account of the use of BST (bovine somatotropin) in dairy cattle production
when predicting breeding values [3]. Models that included an additive effect of
the treatment seem to be more robust to the non-random allocation of BST, and
a multitrait BLUP model would therefore allow better evaluation of the fixed
effects in the model. The present study also shows that with biased models,
one can have a distorted image of the accuracy of breeding values and genetic
trends. On real data, only predicted breeding values are known. Therefore,
simulations for which the true breeding values are also known can reveal such
biases.

On a national scale, a full multitrait model for prediction of breeding values
is usually not feasible. This is primarily due to computational limitations but
also because traits are described by different models. Until these full multitrait
models are feasible, an approximate model as described in this study is a better
alternative than ignoring the correlations between traits.

5. CONCLUSION

An approximate multitrait model with a time (year) effect using preadjusted
data from a two-step procedure is a feasible tool for prediction of breeding val-
ues. In this study, a full multitrait model was not significantly better. Including
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a time (year) effect in the approximate multitrait model led to evaluations
more robust to over- or underestimation of genetic trends and improved ge-
netic progress significantly.

ACKNOWLEDGEMENTS

The authors would like to acknowledge one anonymous referee for a thor-
ough reading of the paper leading to a significant improvement of the paper.

REFERENCES

[1] Besbes B., Ducrocq V., Protais M., An approximate total merit index combining
linear traits, a survival trait and a categorical trait in laying hens, in: Proceedings
of the 7th World Congress on Genetics Applied to Livestock Production, 19–23
August 2002, Montpellier, CD-ROM communication n◦ 20-05.

[2] Canavesi F., Boichard D., Ducrocq V., Gengler N., de Jong G., Liu Z., An alter-
native procedure for international evaluations: Production traits European joint
evaluation (PROTEJE), in: Proceedings of the 7th World Congress on Genetics
Applied to Livestock Production, 19–23 August 2002, Montpellier, CD-ROM
communication n◦ 01-14.

[3] Colleau J.J., Impact of the use of bovine somatotropin (BST) on dairy cattle
selection, Genet. Sel. Evol. 21 (1989) 479–491.

[4] Colleau J.J., Ducrocq V., Boichard D., Larroque H., Approximate multi-
trait BLUP evaluation to combine functional traits information, Final GIFT
Workshop. Breeding goals and selection schemes, Ede-Wageningen, The
Netherlands, 7–9 November, Interbull Bull. 23 (1999) 151–160.

[5] Druet T., Sölkner J., Gengler N., Use of multitrait evaluation procedures to
improve reliability of early prediction of survival, J. Dairy Sci. (2001) online,
http://www.12.24.208.140/adsa/jds/index.asp

[6] Ducrocq V., Multi trait prediction: principles and problems, in: Proceedings of
5th World Congress on Genetics Applied to Livestock Production, 6–11 August
1994, Guelph, Canada, Vol. 18, pp. 455–462.

[7] Ducrocq V., Besbes B., Solution of multiple trait animal models with missing
data on some traits, J. Anim. Breed. Genet. 110 (1993) 81–92.

[8] Ducrocq V., Boichard D., Barbat A., Larroque H., Implementation of an approx-
imate multitrait BLUP to combine production traits and functional traits into a
total merit index, 52nd annual meeting EAAP, Budapest, Hungary (2001).

[9] Ducrocq V., Delaunay I., Boichard D., Mattalia S., A general approach for inter-
national genetic evaluations robust to inconsistencies of genetic trends in na-
tional evaluations, Interbull Technical workshop, Beltsville, Maryland, USA,
2–3 March, Interbull Bull. 30 (2003) 101–111.

[10] Henderson C.R., Best linear unbiased estimation and prediction under a selection
model, Biometrics 31 (1975) 423–447.



Robustness of an approximate multitrait model 367

[11] Lassen J., Sørensen M.K., Madsen P., Ducrocq V., A stochastic simulation study
on validation of an approximate multitrait model using preadjusted data for pre-
diction of breeding values, J. Dairy Sci. 90 (2007) 3002–3011.

[12] Madsen P., Jensen J., DMU: a user’s guide. A package for analysing multivariate
mixed models, Version 6, release 4, DJF, Foulum, Denmark (2000).

[13] Miglior F., Muir B.L., van Doormaal B.J., Selection indices in Holstein cattle of
various countries, J. Dairy Sci. 88 (2005) 1255–1263.

[14] Pollak E.J., van der Werf J., Quaas R.L., Selection bias and multiple trait evalu-
ation, J. Dairy Sci. 67 (1984) 1590–1595.

[15] Schaeffer L.R., Schenkel F.S., Fries L.A., Selection bias on animal model eval-
uation, in: Proceedings of the 6th World Congress on Genetics Applied to
Livestock Production, 11–16 January 1998, Vol. 25, University of Armidale,
Australia, pp. 501–509.

[16] Sullivan P.G., Wilton J.W., Schaeffer L.R., Jansen G.J., Robinson J.A.B., Allen
O.B., Genetic evaluation strategies for multiple traits and countries, Livest. Prod.
Sci. 92 (2005) 195–205.

[17] Sørensen M.K., Berg P., Jensen J., Christensen L.G., Stochastic simulation of
breeding schemes for total merit in dairy cattle, GIFT Seminar on Genetic
Improvement of Functional Traits in Cattle, Wageningen, The Netherlands, 7–9
November, Interbull Bull. 23 (1999) 183–192.

[18] Tarrés J., Piedrafita J., Ducrocq V., Validation of an approximate approach to
compute genetic correlations between longevity and linear traits, Genet. Sel.
Evol. 38 (2006a) 65–85.

[19] Tarrés J., Liu Z., Ducrocq V., Reinhardt F., Reents R., Parameter estimation and
genetic evaluation of milkproduction traits from France and Germany with a
multi-trait MACE model, in: Proceeding at the 2006 Interbull meeting, Kuopio,
Finland, 4–6 June, Interbull Bull. 35 (2006b) 76–86.

[20] The Danish Agricultural Advisory Centre, 2006, http://www.lr.dk/
kvaeg/diverse/principles.pdf

[21] Thompson R., Meyer K., A review of theoretical aspects in the estimation of
breeding values for multitrait selection, Livest. Prod. Sci. 15 (1986) 299–313.

[22] van der Werf J.H.J., van Arendonk J.A.M., De Vries A.G., Improving selection
of pigs using correlated characters, in: Proceedings of the 43rd EAAP Annual
Meeting, Madrid, Spain, 14–17 September, 1992, p. 13.

[23] Villanueva B., Wray N.R., Thompson R., Prediction of asymptotic rates of re-
sponse from selection on multiple traits using univariate and multivariate best
linear unbiased predictors, Anim. Prod. 57 (1993) 1–13.

[24] Weigel K.A., Use of correlated trait information to improve the accuracy of
early predictions of breeding values for length of productive life, in: Proc. Int.
Workshop on Genetic Improvement of Functional Traits in Cattle, Gembloux,
Belgium, 1996, Interbull Bull. 12, Int. Bull Eval. Serv., Uppsala, Sweden.


